10-ARYL-7,7-DIMETHYL-5,6,7,8,9,10-HEXAHYDRO-11H-PYRIDO[3,2-*b*][1,4]BENZODIAZEPIN-9-ONES

N. N. Tonkikh, A. Strakovs, and M. V. Petrova

In reactions of 3-(2-amino-3-pyridyl)amino-5,5-dimethylcyclohex-2-en-1-one with aromatic aldehydes (2- and 4-hydroxy-, 2-hydroxy-3-methoxy-, 4-dimethylamino-, 4-methoxy-, 2,4- and 3,4-dimethoxy-, 3,4-methylenedioxy-, 4-bromo-, 4-fluoro-, 4-chloro-, 2-nitro- and 3-nitrobenzaldehydes, furfural, and 2-thiophenecarbaldehyde), we have obtained the corresponding 10-aryl-7,7-dimethyl-5,6,7,8,9,10-hexahydro-11H-pyrido[3,2-b][1,4]benzodiazepin-9-ones.

Keywords: aromatic aldehydes, 2,3-diaminopyridine, dimedone, pyrido[3,2-*b*][1,4]benzodiazepine derivatives.

Our attempts to synthesize derivatives of hydrogenated pyrido[3,2-b][1,4]- or pyrido[2,3-b]-[1,4]benzodiazepines by reactions of 2,3-diaminopyridine (1) with 2-formyldimedone [1] and 2-carbamidodimedone [2] did not lead to the indicated type of compounds.

In this paper, we describe the reactions of 3-(2-amino-3-pyridyl)amino-5,5-dimethylcyclohex-2-en-1one with aromatic aldehydes, which lead to synthesis of 10-aryl-7,7-dimethyl-5,6,7,8,9,10-hexahydro-11Hpyrido[3,2-*b*][1,4]benzodiazepin-9-ones. Such a general scheme (reaction of enamines, obtained from1,3-cyclohexanediones, and aromatic*o*-diamines with aldehydes) has been widely used for synthesis ofderivatives of dibenzodiazepine [3-7] and also pyridobenzodiazepine [8], among which the pyrido[2,3-*b*]-[1,4]benzodiazepine derivatives have the most valuable pharmacological properties [9-11].

5, **6 a** $\mathbf{Ar} = 2 \cdot \text{HOC}_6\text{H}_4$; **b** $Ar = 4 \cdot \text{HOC}_6\text{H}_4$; **c** $Ar = 2 \cdot \text{HO} \cdot 3 \cdot \text{MeOC}_6\text{H}_3$; **d** $Ar = 4 \cdot \text{Me}_2\text{NC}_6\text{H}_4$; **e** $Ar = 4 \cdot \text{MeOC}_6\text{H}_4$; **f** $Ar = 2,4 \cdot (\text{MeO})_2\text{C}_6\text{H}_3$; **g** $Ar = 3,4 \cdot (\text{MeO})_2\text{C}_6\text{H}_3$; **h** $Ar = 3,4 \cdot \text{CH}_2\text{O}_2\text{C}_6\text{H}_3$; **i** $Ar = 4 \cdot \text{BrC}_6\text{H}_4$; **j** $Ar = 4 \cdot \text{ClC}_6\text{H}_4$; **k** $Ar = 4 \cdot \text{FC}_6\text{H}_4$; **l** $Ar = 2 \cdot \text{O}_2\text{NC}_6\text{H}_4$; **m** $Ar = 3 \cdot \text{O}_2\text{NC}_6\text{H}_4$; **n** $Ar = 2 \cdot \text{C}_4\text{H}_3\text{O}$; **o** $Ar = 2 \cdot \text{C}_4\text{H}_3\text{S}$

Riga Technical University, Riga LV-1048, Latvia; e-mail: marina@osi.lv. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 7, pp. 1095-1100, July, 2004. Original article submitted March 13, 2001; revision submitted September 29, 2003.

0009-3122/04/4007-0944©2004 Springer Science+Business Media, Inc.

In the reaction of 2,3-diaminopyridine (1) with dimedone 2, two isomeric enamines 3 and 4 can be formed. We know [8] that when diamine 1 reacts with 1,3-cyclohexanedione, the product of reaction at the 3-amino group is obtained. In the reaction under discussion of diamine 1 with dimedone, carried out under conditions for azeotropic distillation of water, only one compound is isolated from the reaction mixture and identified. Based on ¹H NMR spectra, we have assigned this compound the structure of 3-(2-amino-3-pyridyl)amino-5,5-dimethylcyclohex-2-en-1-one (4). We identified enamine 4 by comparing its spectra with the ¹H NMR spectra of 3-(2-amino-3-pyridyl)aminocyclohex-2-en-1-one [8]. The chemical shifts and spin–spin coupling constants in the spectra of both these compounds virtually coincide: the differences between their chemical shifts ($\Delta\delta$) are 0.07 ppm for the NH₂ group and 0.06 ppm for the =CH– group. The maximum chemical shift difference is observed for the C₍₃₎–H protons of the pyridine moiety of the molecule ($\Delta\delta = 0.12$ ppm), where the chemical shift values for the C₍₂₎–H protons ($\Delta\delta$ = 0.05 ppm) and C₍₃₎–H protons ($\Delta\delta$ = 0.03 ppm) are virtually the same in both compounds, while the spin–spin coupling constants (${}^{3}J_{H\alpha,H\beta} = 5$ Hz, ${}^{3}J_{H\beta,H\gamma} = 7.5$ Hz) match within the experimental accuracy limits. In the spectra of both of the compared compounds, we observe a strongly broadened signal from the NH proton relatively upfield at \sim 7.3 ppm. Chromatographic data for the reaction mixture after isolation of enamine 4 suggest the presence of four more compounds in the mixture, probably also including enamine 3, which unfortunately we could not isolate.

We carried out the reaction of enamine 4 with aldehydes 5a-d, containing the functional groups [OH, N(CH₃)₂], by boiling equimolar amounts of the reagents in ethanol in the presence of piperidine acetate. We used the same conditions in the reactions of enamine 4 with furfural 5n and 2-thiophenecarbaldehyde 5o. In the

Com-	Empirical formula	Found, %				mp °C	Yield %
pound		С	Н	N	Hal (S)	_P , e	
4	$C_{13}H_{17}N_{3}O$	<u>67.30</u> 67.50	<u>7.49</u> 7.41	$\frac{18.10}{18.17}$		223-224	26
6a	$C_{20}H_{21}N_3O_2$	$\frac{71.44}{71.62}$	$\frac{6.16}{6.31}$	$\frac{12.60}{12.53}$		252-253	82
6b	$C_{20}H_{21}N_{3}O_{2} \\$	$\frac{71.50}{71.62}$	$\frac{6.33}{6.31}$	<u>12.42</u> 12.53		291-292	70
6c	$C_{21}H_{23}N_3O_3$	<u>69.19</u> 69.02	$\frac{6.16}{6.34}$	$\frac{11.42}{11.50}$		243-244	47
6d	$C_{22}H_{26}N_4O$	<u>66.81</u> 66.98	$\frac{6.49}{6.64}$	$\frac{14.14}{14.20}$		252-253	70
6e	$C_{21}H_{23}N_3O_2$	$\frac{72.01}{72.18}$	$\frac{6.69}{6.63}$	$\frac{11.91}{12.03}$		197-198	38
6f	$C_{22}H_{25}N_3O_3$	$\frac{69.42}{69.63}$	$\frac{6.60}{6.64}$	$\frac{11.11}{11.07}$		213-215	43
6g	$C_{22}H_{25}N_3O_3$	$\frac{69.50}{69.63}$	$\frac{6.73}{6.64}$	$\frac{10.93}{11.07}$		126-127	60
6h	$C_{21}H_{21}N_3O_3$	$\frac{69.21}{69.40}$	$\frac{5.70}{5.83}$	$\frac{11.60}{11.56}$		233-234	66
6i	$C_{20}H_{20}BrN_3O$	$\frac{60.11}{60.31}$	$\frac{5.01}{5.06}$	$\frac{10.66}{10.55}$	$\frac{19.90}{20.06}$	237-239	62
6j	C20H20ClN3O	<u>67.71</u> 67.89	$\frac{5.56}{5.70}$	<u>11.72</u> 11.88	<u>9.80</u> 10.02	249-251	38
6k	C ₂₀ H ₂₀ FN ₃ O	$\frac{71.01}{71.20}$	$\frac{6.04}{5.98}$	$\frac{12.33}{12.45}$		237-238	73
61	$C_{20}H_{20}N_4O_3$	$\frac{65.70}{65.92}$	$\frac{5.50}{5.53}$	$\frac{15.27}{15.38}$		196-197	73
6m	$C_{20}H_{20}N_4O_3$	$\frac{65.77}{65.92}$	$\frac{5.39}{5.53}$	$\frac{15.19}{15.38}$		179-181	77
6n	$C_{18}H_{19}N_3O_2$	<u>69.65</u> 69.88	$\frac{6.03}{6.19}$	$\frac{13.42}{13.58}$		244-245	74
60	$C_{18}H_{19}N_3OS$	$\frac{66.26}{66.43}$	$\frac{5.80}{5.88}$	$\frac{12.73}{12.91}$	$\frac{(9.60)}{(9.85)}$	271-272	83

TABLE 1. Characteristics of Synthesized Compounds

Com-	IR spectrum,	HNMP spectrum & nom (CSCC / Uz)*
pound	ν, cm ⁻¹	IT INVIK Spectrum, 0, ppm. (SSEC, J, 112)
1	2	3
4	1666, 1595, 1570, 550-1530; 3400, 3350, 3250-3100	1.03 (6H, s, 2CH ₃); 2.18 (2H, s, CH ₂); 2.36 (2H, s, CH ₂); 4.71 (2H, br. s, NH ₂); 5.09 (1H, s, =CH-); 6.64 (1H, dd, ${}^{3}J$ = 7.5, ${}^{4}J$ = 5, C ₅ H ₃ N); 7.30 (1H, br. s, NH); 7.38 (1H, dd, ${}^{3}J$ = 7.5, ${}^{4}J$ = 2, C ₅ H ₃ N); 7.87 (1H, dd, ${}^{3}J$ = 5, ${}^{4}J$ = 2, C ₅ H ₃ N)
6a	1645; 3350-3250; 3200-3080	1.03 (3H, s, CH ₃); 1.14 (3H, s, CH ₃); 2.11 and 2.17 (2H, two d, ${}^{2}J = 14$, CH ₂); 2.69 (2H, s, CH ₂); 5.81 (1H, d, ${}^{3}J = 6$, CH); 6.00 (1H, d, ${}^{3}J = 6$, NH); 6.41-6.96 (6H, m, C ₆ H ₄ , C ₅ H ₃ N); 7.25 (1H, dd, ${}^{3}J = 7$, ${}^{4}J = 2$, C ₅ H ₃ N); 7.56 (1H, dd, ${}^{3}J = 5$, ${}^{4}J = 2$, C ₅ H ₃ N); 8.94 (1H, br. s, OH); 9.76 (1H, br. s, NH)
6b	1642; 3450-3200; 3150-3050	0.95 (3H, s, CH ₃); 1.14 (3H, s, CH ₃); 2.12 and 2.20 (2H, two d, ² <i>J</i> = 14, CH ₂); 2.55 (2H, s, CH ₂); 5.74 (1H, d, ³ <i>J</i> = 6, CH); 6.49-7.72 (8H, m, C ₆ H ₄ , C ₃ H ₃ N, NH); 7.77 (1H, br. s, NH); 9.14 (1H, br. s, OH)
6c	1645; 3300-3200; 3150-3050	1.05 (3H, s, CH ₃); 1.12 (3H, s, CH ₃); 2.12 and 2.20 (2H, two d, ${}^{2}J = 14$, CH ₂); 2.67 (2H, s, CH ₂); 3.76 (3H, s, OCH ₃); 5.77 (1H, d, ${}^{3}J = 6$, NH); 6.05 (1H, d, ${}^{3}J = 6$, CH); 6.25-6.81 (4H, m, C ₆ H ₃ , C ₅ H ₃ N); 7.34 (1H, dd, ${}^{3}J = 7$, ${}^{4}J = 1.5$, C ₅ H ₃ N); 7.58 (1H, dd, ${}^{3}J = 7$, ${}^{4}J = 1.5$, C ₅ H ₃ N); 8.96 (1H, br. s, NH); 9.03 (1H, br. s, OH)
6d	1638; 3300, 3200; 3150-3050	1.01 (3H, s, CH ₃); 1.12 (3H, s, CH ₃); 2.15 and 2.21 (2H, two d, ${}^{2}J = 16$, CH ₂); 2.54 (2H, s, CH ₂); 2.81 (6H, s, NCH ₃); 5.77 (1H, d, ${}^{3}J = 6$, CH); 6.46-6.78 (4H, m, C ₆ H ₄ , C ₃ H ₃ N, NH); 7.03 (2H, m, ${}^{3}J = 8$, C ₆ H ₄); 7.27 (1H, dd, ${}^{3}J = 7$, ${}^{4}J = 1.5$, C ₅ H ₃ N); 7.65 (1H, dd, ${}^{3}J = 5$, ${}^{4}J = 1.5$, C ₅ H ₃ N); 7.78 (1H, br. s, NH)
6e	1640; 3300, 3200-3100	1.01 (3H, s, CH ₃); 1.12 (3H, s, CH ₃); 2.13 and 2.21 (2H, two d, ${}^{2}J = 14$, CH ₂); 2.58 (2H, s, CH ₂); 3.67 (3H, s, OCH ₃); 5.76 (1H, d, ${}^{3}J = 6$, CH); 6.58-7.27 (6H, m, C ₆ H ₄ , C ₅ H ₃ N, NH); 7.27 (1H, dd, ${}^{3}J = 7$, ${}^{4}J = 1.5$, C ₅ H ₃ N); 7.63 (1H, dd, ${}^{3}J = 5$, ${}^{4}J = 1.5$, C ₅ H ₃ N); 7.87 (1H, br. s, NH)
6f	1645;3350, 3250-3100	1.01 (3H, s, CH ₃); 1.09 (3H, s, CH ₃); 2.14 and 2.22 (2H, two d, ${}^{2}J = 15$, CH ₂); 2.56 (2H, s, CH ₂); 3.58 (3H, s, OCH ₃); 3.65 (3H, s, OCH ₃); 5.76 (1H, d, ${}^{3}J = 6$, =CH-); 6.54 (5H, m, C ₆ H ₃ , C ₅ H ₃ N, NH); 7.25 (1H, dd, ${}^{3}J = 7$, ${}^{4}J = 1.5$, C ₅ H ₃ N); 7.63 (1H, dd, ${}^{3}J = 5$, ${}^{4}J = 1.5$, C ₅ H ₃ N); 8.81 (1H, br. s, NH)
6g	1644; 3350, 3260, 3200-3100	1.03 (3H, s, CH ₃); 1.12 (3H, s, CH ₃); 2.12 and 2.20 (2H, two d, ${}^{2}J = 15$, CH ₂); 2.63 (2H, s, CH ₂); 3.67 (3H, s, OCH ₃); 3.91 (3H, s, OCH ₃); 5.72 (1H, d, ${}^{3}J = 6$, NH); 5.83 (1H, d, ${}^{3}J = 6$, CH); 6.21-6.75 (4H, m, C ₆ H ₃ , C ₃ H ₃ N); 7.27 (1H, m, ${}^{3}J = 8$, C ₆ H ₃); 7.58 (1H, dd, ${}^{3}J = 5$, ${}^{4}J = 1$, C ₃ H ₃ N); 8.92 (1H, br. s, NH)
6h	1638; 3300, 3200-3050	1.01 (3H, s, CH ₃); 1.12 (3H, s, CH ₃); 2.15 and 2.21 (2H, two d, ${}^{2}J = 16$, CH ₂); 2.58 (2H, s, CH ₂); 5.74 (1H, d, ${}^{3}J = 6$, CH); 5.94 (2H, s, CH ₂); 6.58-6.82 (5H, m, C ₆ H ₃ , C ₅ H ₃ N, NH); 7.27 (1H, dd, ${}^{3}J = 7$, ${}^{4}J = 1.5$, C ₅ H ₃ N); 7.67 (1H, dd, ${}^{3}J = 5$, ${}^{4}J = 1.5$, C ₅ H ₃ N); 8.85 (1H, br. s, NH)
6i	1638; 3300, 3200-3050	0.98 (3H, s, CH ₃); 1.09 (3H, s, CH ₃); 2.12 and 2.20 (2H, two d, ${}^{2}J = 14$, CH ₂); 2.56 (2H, s, CH ₂); 5.78 (1H, d, ${}^{3}J = 6$, CH); 6.67 (1H, dd, ${}^{3}J = 7$, ${}^{3}J = 5$, C ₃ H ₃ N); 6.87 (1H, d, ${}^{3}J = 6$, NH); 7.04-7.45 (5H, m, C ₆ H ₄ , C ₃ H ₃ N, NH); 7.67 (1H, dd, ${}^{3}J = 5$, ${}^{4}J = 2$, C ₅ H ₃ N); 8.89 (1H, br. s, NH)
6j	1638; 3300, 3240-3080	1.03 (3H, s, CH ₃); 1.09 (3H, s, CH ₃); 2.14 and 2.22 (2H, two d, ${}^{2}J = 15$, CH ₂); 2.65 (2H, s, CH ₂); 5.83 (1H, d, ${}^{3}J = 6$, CH); 6.62 (1H, dd, ${}^{3}J = 7$, ${}^{3}J = 5$, C ₅ H ₃ N); 6.85 (1H, d, ${}^{3}J = 6$, NH); 7.18-7.34 (5H, m, C ₆ H ₄ , C ₅ H ₃ N); 7.69 (1H, dd, ${}^{3}J = 5$, ${}^{4}J = 1.5$, C ₅ H ₃ N); 8.92 (1H, br. s, NH)
6k	1645; 3300, 3250-3100	1.01 (3H, s, CH ₃); 1.11 (3H, s, CH ₃); 2.14 and 2.22 (2H, two d, ${}^{2}J = 14$, CH ₂); 2.55 (2H, s, CH ₂); 5.83 (1H, d, ${}^{3}J = 6$, CH); 6.58-7.33 (7H, m, C ₆ H ₄ , C ₃ H ₃ N, NH); 7.67 (1H, dd, ${}^{3}J = 5$, ${}^{4}J = 1.5$, C ₅ H ₃ N); 8.89 (1H, br. s, NH)

TABLE 2. IR and ¹H NMR Spectra of Synthesized Compounds

 TABLE 2 (continued)

1	2	3
61	1640; 3350, 3250-3100	0.98 (3H, s, CH ₃); 1.09 (3H, s, CH ₃); 2.06 and 2.14 (2H, two d, ² J = 14, CH ₂); 2.67 (2H, s, CH ₂); 5.78 (1H, d, ³ J = 6, NH); 6.07 (1H, d, ³ J = 6, CH); 6.78-8.06 (7H, m, C ₆ H ₄ , C ₅ H ₃ N); 8.89 (1H, br. s, NH)
6m	1643; 3300, 3240-3080	1.01 (3H, s, CH ₃); 1.14 (3H, s, CH ₃); 2.21 and 2.29 (2H, two d, ${}^{2}J = 15$, CH ₂); 2.63 (2H, s, CH ₂); 6.09 (1H, br. s, CH); 6.89 (1H, dd, ${}^{3}J = 7$, ${}^{3}J = 5$, C ₃ H ₃ N); 7.49-8.12 (7H, m, C ₆ H ₄ , C ₅ H ₃ N, NH); 9.25 (1H, br. s, NH)
6n	1635; 3320, 3200-3050	0.96 (3H, s, CH ₃); 1.07 (3H, s, CH ₃); 2.11 and 2.17 (2H, two d, ${}^{2}J = 16$, CH ₂); 2.51 (2H, s, CH ₂); 5.81 (1H, d, $J = 6$, CH); 5.82 (1H, m, C ₄ H ₃ O); 6.14 (1H, m, C ₄ H ₃ O); 6.67 (2H, m, C ₃ H ₃ N, NH); 7.29-7.42 (2H, m, C ₄ H ₃ O, C ₅ H ₃ N); 7.72 (1H, dd, ${}^{3}J = 5$, ${}^{4}J = 1$, C ₅ H ₃ N); 8.88 (1H, br. s, NH)
60	1637; 3350, 3220-3080	0.99 (3H, s, CH ₃); 1.05 (3H, s, CH ₃); 2.12 and 2.20 (2H, two d, ${}^{2}J = 14$, CH ₂); 2.55 (2H, s, CH ₂); 6.03 (1H, d, ${}^{3}J = 6$, CH); 6.58-6.92 (4H, m, C ₅ H ₃ N, C ₄ H ₃ S); 7.14-7.34 (2H, m, C ₅ H ₃ N, C ₄ H ₃ S); 7.69 (1H, dd, ${}^{3}J = 5$, ${}^{4}J = 1.5$, C ₅ H ₃ N); 8.89 (1H, br. s, NH)

* The ¹H NMR spectrum of compound 4 was recorded in CDCl₃; the spectra for the rest of the compounds were recorded in DMSO-d₆.

reactions with the aldehydes **5e-m**, the best results were achieved by boiling in ethanol in the presence of sulfuric acid.

In the ¹H NMR spectra of the derivatives of pyridodiazepine **6**, the proton at the C₍₁₀₎ atom is characterized by a doublet δ 5.74-6.09 ppm (J = 6 Hz), and the proton at the adjacent N₍₁₁₎ atom gives a doublet δ 5.72-6.87 ppm (J = 6 Hz). The protons of the methylene group at C₍₈₎ are magnetically nonequivalent and coupled (geminal spin–spin coupling constant 14-16 Hz), representing an AB spin system.

In the IR spectra, the carbonyl group of compounds **6** is characterized by absorption bands in the interval 1645-1635 cm⁻¹, while the stretching vibrations of the NH bonds are intense bands in the 3350-3100 cm⁻¹ region.

EXPERIMENTAL

The IR spectra were taken on a Specord IR-75 for suspensions of the compounds in vaseline oil (1800-1500 cm⁻¹, only the absorption bands for the carbonyl group are given) and in hexachlorobutadiene (3600-2000 cm-1, the stretching vibration bands for the C–H bonds in the 3050-2800 cm⁻¹ region are not given). The ¹H NMR spectra were measured on Bruker WH-90/DS (90 MHz) and Varian-BB Mercury (200 MHz) spectrometers, internal standard HMDS (δ 0.055 ppm)

We used Fluka 2,3-diaminopyridine for synthesis of enamine 4.

3-(2-Amino-3-pyridyl)amino-5,5-dimethylcyclohex-2-en-1-one (4). A solution of dimedone (2.80 g, 20 mmol) and 2,3-diaminopyridine (2.18 g, 20 mmol) in toluene (100 ml) in the presence of a catalytic amount of *p*-toluenesulfonic acid was boiled for 3 h with a Dean–Stark attachment. Then the toluene was distilled off under vacuum and dry THF (30 ml) was added to the residue. The solution obtained was held for 24 hours in a refrigerator; the precipitate was filtered out and recrystallized one more time from THF. Enamine **4** (1.20 g, 26%) was obtained.

10-(2-Hydroxyphenyl)- (6a), 10-(4-Hydroxyphenyl)- (6b), 10-(2-Hydroxy-3-methoxyphenyl)- (6c), 10-(4-Dimethylaminophenyl)- (6d), 10-(2-Furyl)- (6n), and 10-(2-Thiophenyl)- (6o) 7,7-dimethyl-5,6,7,8,9,10-hexahydro-11H-pyrido[3,2-b][1,4]benzodiazepin-9-ones. A solution of enamine 4 (1.5 mmol), the corresponding aldehyde 5 (1.5 mmol), glacial CH₃COOH (0.15 ml), and piperidine (0.20 ml) in ethanol (15 ml) was boiled for 3 h. The reaction mixture was poured into crushed ice to cool down. When a tarry residue was formed, it was triturated until it solidified; the precipitate formed was filtered out, and the compounds **6a,c,d,n,o** were recrystallized from ethanol and the diazepinone **6b** was recrystallized from 2-propanol.

10-(4-Methoxyphenyl)- (6e), 10-(2,4-Dimethoxyphenyl)- (6f), 10-(3,4-Dimethoxyphenyl)- (6g), 10-(3,4-Methylenedioxyphenyl)- (6h), 10-(4-Bromophenyl)- (6i), 10-(4-Chlorophenyl)- (6j), 10-(4-Fluorophenyl)- (6k), 10-(2-Nitrophenyl)- (6l), and 10-(3-Nitrophenyl)- (6m) 7,7-dimethyl-5,6,7,8,9,10-hexahydro-11H-pyrido[3,2-*b*][1,4]benzodiazepin-9-ones. A solution of enamine 4 (1.5 mmol), the corresponding aldehyde 5 (1.5 mmol), and conc. H_2SO_4 (0.15 ml) in ethanol (15 ml) was boiled for 3 h. Then the solvent (7-10 ml) was distilled off under vacuum. The residue was poured into crushed ice and an aqueous KOH solution was added until pH 7 was achieved; after 24 hours, the precipitate was filtered out and compounds **6e-g,j-m** were recrystallized from 2-propanol, the diazepinone **6h** was recrystallized from ethanol, and the diazepinone **6i** was recrystallized from dioxane.

REFERENCES

- 1. A. Strakovs, M. V. Petrova, N. N. Tonkikh, E. E. Brooks, S. J. Biehle, and G. P. Kreishman, *J. Org. Chem.*, **64**, 1462 (1999).
- 2. N. N. Tonkikh, A. Strakovs, M. V. Petrova, V. V. Chernyshev, and H. Schenk, *Khim. Geterotsikl.* Soedin., 822 (2002).
- 3. R. Martinez, E. Angeles, and F. Martinez, *Heterocycl. Commun.*, 2, 47 (1996).
- 4. N. Rashed, M. Sayed, and E. S. H. El-Ashry, J. Chin. Chem. Soc., 40, 189 (1993); Chem. Abstr. 119, 139194 (1993).
- 5. E. J. J. Vanden, A. Mayence, A. Magnestian, and E. Andrs, Bull. Soc. Chim. Belg., 101, 801 (1992).
- 6. M. A. Lukhate and P. S. Fernandes, J. Indian Chem. Soc., 67, 609 (1990).
- 7. S. Miyano and N. Abe, *Chem. Pharm. Bull.*, **20**, 1588 (1972).
- 8. Y. Blache, M. Hichour, G. Di Blasi, J.-M. Chezal, H. Viols, O. Chavignon, J.-C. Taulade, and J.-P. Chapat, *Heterocycles*, **51**, 1003 (1999).
- 9. T. Watanabe, I. Kinoyama, K. Takizawa, S. Hirano, and T. Shibanuma, *Chem. Pharm. Bull.*, **47**, 672 (1999).
- 10. T. Watanabe, I. Kinoyama, A. Kakefuda, T. Okazaki, K. Takizawa, S. Hirano, H. Shibata, and I. Yanagisawa, *Chem. Pharm. Bull.*, **45**, 996 (1997).
- 11. F. X. Woolard, J. Paetsch, and J. A. Ellman, J. Org. Chem., 62, 6102 (1997).